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Others have shown that the conventional method for computing m X n matrix-
vector products and Horner’s rule for evaluating polynomials are optimal when
matrix and vector elements as well as polynomial coefficients and polynomial vari-
ables are indeterminate. In this article, the calculation of matrix-vector products
and the evaluation of polynomials are treated when the matrix elements and poly-
nomial coefficients are known and drawn from a set of size s. It is shown that the
algorithms which are optimal for indeterminate matrix entries and polynomial
coefficients are nonoptimal when s is fixed and the entries and coefficients are
known. Good algorithms for this case are given and tight bounds are derived on
the combinational complexity of the most complex matrix-vector function and the
most complex polynomial evaluation function. These are operations used in the
Deep Space Station computers for decoding telemetry and interpolating ephem-
erides for antenna pointing and programmed oscillators.

I. Introduction The multiplication of an m X n matrix A with entries

1 . i} b -
The two problems treated in this article are the calcu- {ai;} by an n-vector

lations of matrix-vector products and the evaluation of a
set of polynomials. The first problem causes most of the
combinational complexity in DSN telemetry decoders, —————
and the second tends to overload programmable oscilla- 1Di.vision of Enginee.ring.and Cen.ter for Computer and Information
tor minicomputers in high doppler situations such as in Science, Brown University, Providence, Rhode Island, and consul-
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planetary orbiters (see Ref. 1 for a data decoder assembly reported here was completed at Brown University with the sup-
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is defined by
1=i=m
(1)

where * denotes multiplication and + denotes addition.
The evaluation of m polynomials, b, (z), - - - , by (z) of
degree n in one variable z is defined by

fi(xh o ,xn) =@ %+t Gy * Xy,

bi(z)=bi0+bi1*z+bi2*z2+ A +bi,,*z",

1=i<m (2)

where * and + are the multiplication and addition opera-
tors and z/ = z+2’** denotes the j-fold product of z with
itself.

The obvious way to do matrix-vector multiplication is
that indicated by Eq. (1) and requires mn = operations and
m(n — 1) + operations. Polynomials can be evaluated
with Horner’s rule, namely,

bi(z) =bis +z(bin+ - ) - - )

which is not so obvious and which uses mn #s and mn +’s.
It can be shown (Refs. 2, 3, and 4) that no fewer than
these numbers of operations are sufficient when the matrix
entries, vector entries, polynomial coefficients, and the
parameter z are indeterminates (or are isomorphic to
indeterminates).

In this article, it is assumed that the vector elements
{x;,%:, - * - ,x,} and the parameter z are the only indeter-
minate elements and that the matrix entries {a;;} are
known, fixed, and drawn from a set of size s, a typical
DSN situation. Then the functions {f,, f., - -, f»} are func-
tions of n variables and the polynomials {b, (z), " -, b (2)}
are functions of one variable. By exhibiting algorithms,
we shall show that the set {f,, " * -, f»} can be computed
with approximately mn {n (s)/In(m) operations and the
set {b;(z), - - - , b (2)} can be computed with about
mn {n (s)/In (mn) operations, for m and n large. Further-
more, counting arguments will be derived to show that
under suitable conditions these upper bounds can be im-
proved upon by at most constant factors for the worst-case
matrix and worst-case set of polynomials.

We conclude that algorithms for computing matrix-
vector products for fixed matrices and for evaluating a
specific set of polynomials are asymptotically less expen-
sive to realize than algorithms which compute any m X n
matrix-vector product or for evaluating any set of m
n-degree polynomials. These results also hold when the
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number of values assumed by matrix elements and by
polynomial coefficients is bounded.

Il. Preliminaries

Let f = {f,, - - - ,fn} be the set of functions realized
by the matrix-vector product and let

f = Ax (3)

represent the m expressions defined in Eq. (1), where
X = (%, * * * ,%,). Assume that the x; are indeterminate
over the set S so that £:5* — S™ where S* denotes the
n-fold Cartesian product of S with itself. Since the coeffi-
cients {a;;} in Eq. (1) are assumed drawn from a finite set,
without loss of generality, we let a;; be chosen from
among {1,2, - - - ,s} and regard the » operation a;; * x;
to be the pth unary operation U, (x;), U,:S~— S, when
a;; = p. We also define + :52 > S to be an associative
binary operation and call it addition. Also, we assume
that S contains the additive unit o satisfying o + x =
x+to=u=x

The following examples illustrate the generality of this
formulation:

(1) Let s =2, U, (x;) = 0, U, (x;) = x;. Then, the alge-
braic system < S, + > is a semigroup such as:

(a) S = R(reals), + denotes either multiplication
or addition.

(b) S ={0,1}, + denotes the Boolean AND, OR,
or EXCLUSIVE OR.

(2) (a) S=R, U,(x) = r,=x, r, ¢ R, * denotes multipli-
cation on reals and + denotes addition on reals.

(b) S =D (set of q X g matrices over D), U, (x) =
x?, the pth power of the matrix x, + denotes
matrix addition.

(¢) S ={0,1}, U, (x) = x (Boolean complement),
U, (x) = x, f; are called minterms.

The polynomials defined by Eq. (2) are {b,(z), - - -,
b, (z)} as above. Let z¢ S so that b; :S— S and let b;; be
in {1,2,---, s}, b;; = 2 denote the unary operation U, (z/),
Uy,:S—> S, when b;; = p. Also, let - and + be binary
associate operations, *:S X S§— 8§, +:5 X S-S, let - dis-
tribute over + and let 2’ be defined by 2z’ =z z/-*, Exam-
ples are:

(1) S = R (veals), U, (z/) =1,%z, r,¢ R, and * =+ and
is multiplication on reals, and + is real addition.
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(2) S = D4 s =2 +and -+ denote matrix product and
addition and U, (z/} = 0, U, (z) = z.

The complexity of a set of functions {g:,gs = * * , &n}
over S, g;:8%— 8§, will be measured by the minimum
number of steps to realize the set with straight-line algo-
rithms (SLAs). The relationships between this measure
and conventional measures of complexity such as storage
and time are discussed in Ref. 5.

Definition. Let @ = {h;|h;:S" — S} be a finite set of func-
tions over S, called the basis, and let I' = {x,, - - - , %, K},
called the data set, be a set of k indeterminates over S
and KCS, a set of constants. Then a g-step SLA, 8 =
(B1, -+ *,By), is an ordered set of g-steps {Bs, * - * , Bq}
where either 8; ¢ T (a data step), or
Bi= (hi5187'1’ o HBf,,i)’ fi 0" ’i"i <j

that is, 8; is a computation step which results from a basis
function operating on previous steps. The SLA computes
the set of functions {8, - - - ,8,} where

B ifB;el
B; = _ 3
h; (,3]'1, T ,[)’jni) otherwise

Definition. To each basis element h;, assign cost ¢; > 0.
Then, the cost of an SLLA 8, x (), is defined by

Q)
x(B) = 2 qici

where q; is the number of occurrences of h; in 8 and |Q|
is the number of basis functions. The combinational com-
plexity of the set of functions g = {g;, """, gn}, i : S > S,
Cqa(g), is the minimum of x(B) over all SLAs B which
compute g and undefined (or infinite) if there is no 8 with
basis @ which computes g.

lil. Upper Bounds

Let C,,, » denote the maximal combinational complexity
of the m X n matrix-vector product functions and let D, ,
be the same for the most complex set of m polynomials of
degree n. In this section, upper bounds to C,, , and D, »
are derived by construction of SLAs. Lower bounds to
these quantities are derived in the next section.

We sketch SLAs for evaluation of f = Ax and of

{bi(z), - * - ,bw(2)}. We begin with the matrix-vector
product problem. Represent the n-vector x as
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([«x7] is the smallest integer = x) subvectors

X = (x1,x2, e ,xto)
where
X = (Xonren © 00, Xik)
for 1=i=t¢t,— 1 and
xto = (x(to—l)lﬂ-l, tr ,xn)
Let A be subdivided into ¢ submatrices B, B;, - - - , By,
A=[B, B, ‘- Bi]

where B; ism X k, 1 =i=1t, — 1 and B, is m X r where
r=mn— (t, — 1) k. Then, f = Ax can be computed as
follows:

(1) Form the ¢, matrix-vector products

y'=Bxi 1=i=t, (4)

(2) Do vector addition of these products to form f.

f=y + - tyh (3)
This decomposition is possible because the binary opera-
tion of addition is associative. Also, we shall show that
the products B;x* can be done with significantly fewer
operations than are required for the obvious method of
matrix-vector multiplication. This will translate into a
savings for the computation of f.

Consider polynomial evaluation next. Represent a poly-
nomial b; (z) as
bi(z) = Pi1(z) + Pip(z)*2F + + -+ + Py (z) r 20Dk
(6)

where each P;; (z) is a polynomial of degree k — 1 and

n+1
tl = k
This representation is unique and possible because +
and ¢ are associative and ¢ distributes over +. The algo-
rithm which shall be given for evaluating a set of poly-

nomials will generate all polynomials of degree k — 1, use
them in the appropriate places, and follow them with the
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necessary multiplications by terms z’ and the necessary
additions.

TreoreM 1. Let Q contain the binary operation + and
the unary operators {U,, - - -, U,}. If ¢, is the cost of +,
then

Cédﬂ - 1) Con i + Cor + <[1ﬂ - 1> me.

(7)
Proof. In the decomposition of Egs. (4) and (5),

(‘7%—‘ - 1) Cm,k + Cm,r

is the cost of computing y', - -+ ,y%. With a total of

(%1-1)

additions per component of f, f can be formed. Since this
decomposition may not be the best way to realize f,
Eq. (7) follows.

Turorem 2. Let Q contain the two binary operations +
and ¢ and the unary operators {U,, - - -, U,}. Also, let
U, (x) = x be the identity operator. If ¢, is the cost of +
and c; is the cost of +, then

+1
Dm,néDN,k—l + (‘;n k

—| - 1) (mec, + (m + 1) cy)
8)

where N = §* is the number of polynomials of degree
k—1.

Proof. In the decomposition of Eq. (6), all of the poly-
nomials P;; (z) are fixed. There are at most N = s* of them
and they can all be realized with a combinational com-
plexity of Dy j.1. To form Eq. (6), compute 2%, - - -, z{/17D%,
This can be done with (t, — 1) *’s since z** is available as
a polynomial of degree k — 1. Form the £, — 1 products
Pi;(z) 27, 1=<j=1¢t, — 1, for each i,1=i=m and do
the indicated additions. A total of m (¢, — 1) additions
and (m + 1) (¢, — 1) multiplications will be done. Then
Eq. (8) follows since this is but one method for computing

{bl (z), T ,bm<z)}

These two theorems will prove useful when bounds to
Cn.x and Dy ;. ; have been derived. This is the next task.

Lemma 1. Let Q contain + and {U,, - - -, U,}.
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Let ¢ = 1 if one of the unary operators, say Us, is the
o-ary operator, U, (x;) = 0, and let ¢ = 0, otherwise. Let
¢, be the cost of U, 1 =p =2, and let

K,=mk(max ¢)+m((k—1)c.

k(c,+ - +es) teo (5 —s%) /(s — 1)

K, =
k(ci+ - +es—(s—1)c)) Tea(sF—1) =

Il

™
i
—_— O

then

Cm,k =< min (KI, Kz)

Proof. The K, bound follows from the standard aglorithm
for matrix-vector multiplication.

The K, bound is derived by first noting that all s unary
operations on x;, - - * ,%x can be performed at a cost of
k(c,+c.+ - -+ +¢;) and then determining the num-
ber of additions to form all s* sums of the form

Ufl (x1> + -+ U;k(xk)

If all such sums are available, all functions f = Ax can
be computed since there are at most s* such distinct
functions.

We show by induction that all s sums can be formed
with at most s* +s% + - - - + 8 = (¢ —§?) /(s — 1)
additions. Clearly, all sums in two variables can be formed
with s? additions. Assume that all s* sums in k — 1 vari-
ables k=3 can be performed with s* + - - - + ¢** addi-
tions. For each of these s*! sums, s additions are formed
to adjoin {U, (x;),1 =1=s}, for a total of s* new addi-
tions. Thus, all sums of k variables can be done with
s* + s+ - -+ + s¥ additions, and the induction hypothe-
sis holds.

If there is a unary operator U, = 0, some additions are
unnecessary. Form all sums

U’i (xi) + U;j (xj),
i1, 1=i,
with one addition per sum. All sums

U’i (xl) + Ul]- (x]) + U’p (xp>) 01' 52,

>0 ,>2

can be formed with one more addition per sum. Hence,
all the sums can be formed with a number of additions
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equal to the number of terms requiring one or more addi-
tions. Since there is one 0 sum and k (s — 1) sums involv-
ing one nonzero unary operation, all sums can be formed
with & — k(s — 1) — 1 additions when & = 1.

The next result is a bound on Dy 5.

Lemma 2. Let Q contain +, -, and {U,, - - - ,U,}. Let
Cu, €3, and ¢, be the costs of +, +, and U,, 1 =p =<3, re-
spectively. Also, assume that U, (x) =%, ¢, =0, and let
e =1if U, (x) = 0and let ¢ = 0 if U, (x) £ 0. Then, when
N = ¢,
DNyk_léh(k) Cy + k(Cl + Co> + e+ 0371) + K2

where K, is defined above and h (k) =k — 2 if k=2 and
h (k) = 0, otherwise.

Proof. Dy 1., is the combinational complexity of the most
complex set of §* polynomials of degree k — 1. Clearly,
this is the set of all polynomials of degree k — 1.

Realize these polynomials as follows: (1) construct the
sequence 1,z,2% - - -, 251 using h (k) 7’s; (2) to each term
apply U,, U,, - - - , Uy, at a cost of k(c: + ¢, + - - -
+ ¢5-4); (3) then add the k terms. This last step has cost
K., as shown in the proof of Lemma 1,

These two lemmas and two theorems are combined to
give asymptotic bounds on the combinational complexity
of matrix-vector multiplication and polynomial evaluation.

Tueorem 3. Under the conditions of Theorem 1 and
Lemma 1,

C, = [%] (K. + mey) — meq

and for m, n large

Cppop = (1 + 0<-l—>+ 0 (l»
log, m log, m n
Proof. The first inequality follows directly from Theo-
rem 1 and Lemma 1 since C,,, , =< C,, 1.

The second inequality follows from a long but uncom-
plicated set of steps when

k = [log, [(m/s)/log, (m/s)]]

Tueorem 4. Under the conditions of Theorem 2 and
Lemma 2,
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n(mec, + (m + 1) cp)
log, (mn)

Dpn= (1 4+ 0(1/In(mn)))

for large n where ¢, and ¢; are the cost of + and -,
respectively.

Proof. The theorem follows from Theorem 2 and Lemma 2
when

k= I'-logs ((mn)/s (logs (mn/s))z)—l

Table 1 shows the first bound of Theorem 3 to Cy, »
optimized under variation of k, when m = n is a power of
2, 5s=2 ¢c,=1Lci=co=0and e=1 (ie, U, (x) =0).
It also shows the ratio of the K, bound to this bound. The
improvement over the K, bound is substantial and for
large binary matrices recommends the method of matrix-
vector multiplication by decomposition.

Table 2 shows the bound to D,, when ¢, =¢; =1,
¢: = ¢, = 0 and ¢ = 1, which follows from Theorem 2 and
Lemma 2. Also shown is the ratio of 2n, the number of
operations for Horner’s rule, and this bound. The improve-
ment is substantial for large n and warrants use of the
algorithm introduced above.

IV. Lower Bounds

In this section, an upper bound is derived on the number
of distinct sets of m functions {g;, * * * ,gn},g;: S"—> S,
with Ca(g,, - ', gu) = C. If C is not large enough, not
all sets of such functions can be realized at a cost =C.
Consequently, at least one set must have combinational
complexity > C. This result is used to derive lower bounds
to Cp, » and Dy, ,, and to show that the upper bounds given
above are tight under suitable conditions.

Let No(C,m,p) be the number of distinct sets of m
functions in p variables {g,, - * * ,gu},g; : S?— S, with
Ca(g, - ,8m)=C.

Lemma 3. Let all operations in Q be either unary or
binary. Then, for p =86,

Nao(C,m,p) < |@]%¢* (p + | K| + C /c¥)> w+IKI+¢/cx(m=1)/2)

where ¢* > 0 is the cost of the minimum cost operation
and K C § is the set of constants in the data set.

Proof. Consider SLAs in which variable data steps pre-

cede constant data steps and these precede computation
steps. There is no loss of generality in this assumption.
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Letan SLA ghave p” = p variable data steps x; , - -, x; -
drawn without replacement from {x;, - - - , x,}. There are

(p’> < 2p
r
ways to do this.

Let the SLA B8 have d = | K| constant data steps. There

(1% <2

ways to choose these d constants.

Also, let 8 have t computation steps (hi; 8;,, 8:,) where
Bi, may be empty if h; is unary. There are at most
M (p’, d, t) such steps, where

S rd+t

p
M(p',d,t) =la|* TI

J=p'+d

(i—1)?

To B we associate sets of m functions. One function of
each set must be associated with the last step (otherwise,
the SLA is not optimal) and the remaining m — 1 functions
of each set can be assigned in at most (p’ +d + ¢ — 1)™?
ways.

There are at most L (p’, d, t) sets of m functions asso-
ciated with SLAs with p’ variable data steps, d constant
data steps, and ¢ computation steps, and

L(p',d,t) =2+ (p' + d + )" M (p', d, t)

This bound is clearly monotonically increasing in p’, d,
and t.

Since No(C,m,p) is the sumof L (p’",d,t) over o == p’ = p,
o=d=|K| and o=t=T where T = | C/c*] (| x] is the
largest integer = x) and ¢* > 0 is the cost of the minimum
cost basis function,

No(C,m,p)= (p + 1) (|K]| + 1) (T + 1)20+/xl
X (p+ |K| + T)*M (p,|K|,T)

It is easily shown that

Q Q+1 X
D Invé/ 1nxdx=xln<——>
L e

v=L

Q+1
, L=0

L
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so that

M(p,|K|,T)=]|a|* <7’_+_|ﬂ+_7l>2<p+xm

€

+ |K| — 1\ 2+El-D
% (P Iel )

Then, combining terms, we have
Na (C,m,p) =
(p+1(T+1) (IK| + 1) ¢k
o2 (w+|Kj+T) (p + |K| — ]_>2(p+]KJ—1)

€

y ’QIT(P + IK' + T)2(1’+]K1+T+(m~1)/2)

It can be shown that the first bracketed term is mono-
tonically decreasing in T and p and has value =1 at T =
p = 0. The second bracketed term is monotonically de-
creasing in increasing |K| for p=4 and is <1 for p=86.
From this and T == C/c*, the theorem follows.

It remains to apply Lemma 3 in order to derive lower
bounds for C,,,, and D,, ».

Tureorem 5. Let Q be the number of distinct sets of m
functions {g;, * * * ,&n}, & : S?—> S, in the set (1. Then, if
C () is the maximum of Ca (gy, * * * , &n),

InQ
(InQ) +In(|2]/2)

—c"(p + K[+ (m—1)/2)

c*
>~
C(Q/l)—2 n

for p =6 when |2|In Q =2¢ and ¢* > 0 is the cost of the
minimum cost basis function.

Proof. Let C, satisfy

2¢(Inx +InfQ|) =mIQ
where

x=p + |K| + (Co/c*) + (m —1)/2

Then, it is easy to show that N (C,, m, p) < Q. Conse-
quently, for some set

{gl, T ,gm}ﬁm, Cﬂ(gh T ’gm>-§C0

We solve for C,. The equation above is rewritten as

ylny:lg—z)—Lan:B
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where y = x |@|. The function y Iny is monotonically
increasing for y=1 and at y = y, = B/In B we have

B
y:Iny, 1B (InB—InlnB) < B

if Inln B=:0 or B=¢. Therefore, the solution y is

12|
3 nQ

In(InQ) + In(]2]/2)

y=y, =

if [2]|InQ=2¢ and it follows from

y=(p+|K|+(Co/c*) + (m—1)/2]0]
that
c=Z n Q
°= 2 In(InQ) +In(|2]/2)
—c*(p+ K|+ (m—1)/2)

This completes the proof.

Note that the proof of Theorem 5 and Lemma 3 re-
quires that the cost of all basis functions be greater than
zero. Thus, if basis functions of zero cost exist, they can-
not be used if these results are to apply. We now spe-
cialize these results to matrix-vector multiplication and
polynomial evaluation.

Corollary 1. If all of the s" 1 X n matrix-vector functions
are distinct and if there are e, a, with 0 < ao; <, < 0
such that a; =< m/n == a,, then

c*mn

Cmn= Flog, (m)

(1 +0(1/In(m)))

for |0|, |K|, and s fixed and m, n large.

Proof.

since there are this many ways to construct m distinct
functions in p = n variables. Then,

Q=sm(1-1/s") - (1= (m—1)/s")/m!
Using the inequality

1-a)(l—a)=1—a,—a
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for a,, a, =0, we have
Q=s"(1 —m(m— 1)/(2s")/m! > s (1 — m?/s")/ml
Then,

InQ=nmlns +In(1 — m?/s") —mlnm

or

ns® n

anénmlns<1+O<m lnm>>

since In (1 — x) =< x and m?/s" < < 1 under the conditions
stated.

From the monotonicity of /(Inx + a) for hx=1—a
and from the discussion above, it follows that

InQ -
InlnQ +In(|Q]/2)

Eﬁ%(l + 0(1:" + lnnm> + 0(11;’&?71) >>

and since a; = m/n==a,, m and n large, the dominant
term is the last one. Finally logmn=_2logm — loga,,
from which the theorem follows.

Comparing this corollary with the upper bound of
Theorem 3, it is clear that when m and n are comparable
and large and all the 1 X n matrix-vector functions are
distinct, the upper bound to C,, , can be improved by at
most a constant factor. Certainly all the 1 X n matrix-
vector functions are distinct when s = 2 and U, (x) =0,
U, (x) = x, and x; ¢ S = R (reals).

Corollary 2. If all of the s**! n-degree polynomials in z are
distinct and if there is an « with 0 < a < o such that
m < an, then for large n

*
Dp w52
’ 2 lo

—m (1 + 0(1/In (mn)))

for ||, |K], and s fixed.

Proof. The number of distinct sets of m functions Q equals

Sn+1
(")
Using the lower bound of the proof of Corollary 1 with

n + 1 replacing n, we have
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InQ . _(+1)m
InlnQ +In(]Q]/2)  logi(n+1)m

(140 m__, lm
( (n+1s+  n+l

()

Under the condition m =< an, 0 < a < «, the dominant
term for large n is the last term.

Since the polynomials depend on p = 1 variable, from
Theorem 5 we have

(n+1)m

C*
S U B AL
Dy.n== 2 logs(n + 1)m

(1 + 0(1/1In (nm)))
—c*(1+|K| + (m—1)/2)

For n large, the theorem follows from the suitable approxi-
mation to this bound.

The result for polynomial evaluation is somewhat
stronger than that for matrix multiplication since the
bounds of Corollary 2 and Theorem 4 differ by at most a
constant for large n only. It is not necessary that m, the

number of polynomials, also be large. Hence, when m = 1
and one polynomial of degree n is to be evaluated, the
combinational complexity of the worst such function
behaves as n/log,n, for n large, for those cases where
there are s* distinct n-degree polynomials. One such case
is that in which s = 2, U, (z/) =0, U.(x/) = 2/ and z¢ R.

V. Conclusions

The matrix-vector functions and the polynomial func-
tions examined here are restrictions of the functions
which obtain when the matrix elements and the poly-
nomial coefficients are treated as indeterminates. From
this vantage point, it is not surprising that these two
problems are considerably less complex than the gen-
eral problems. Nevertheless, the algorithms presented
here promise considerable reductions in the number of
operations to do matrix-vector multiplication with fixed
matrices and to do polynomial evaluation with fixed poly-
nomials. These reductions, however, will be realized only
in those applications where the matrix-vector multiplica-
tion and polynomial evaluation are to be done many times,
since the algorithms offered above must be constructed
from a search of the matrix entries and of the polynomial
coefficients and this search time will be comparable to the
time to evaluate the functions using the algorithms for
the general problem.
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Table 1. Bound on C, »

n Best k Crn= nin—1) Ratio
4 2 6 12 2
8 2o0r3 28 56 2
16 4 92 240 2.61
32 4 312 992 3.18
64 5 1,106 4,032 3.65
128 5 3,876 16,256 419
256 6 13,203 65,280 494
512 7 46,256 261,632 5.66
1024 8 161,664 1,047,552 6.48
2048 9 585,472 4,192,256 7.16
4096 10 2,090,594 16,773,120 8.02
Table 2. Bound on Dy,
n Best k Dy, n= 2n Ratio
3 2 4 6 1.5
7 2 10 14 14
15 3 20 30 1.5
31 4 34 62 1.82
63 4 58 126 2.17
127 5 104 254 2.44
255 5 182 510 2.80
511 6 322 1022 3.17
1023 7 563 2046 3.63
2047 7 1001 4094 4.09
4095 8 1786 8190 4.59
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